Wikipedia Link Structure and Text Mining for Semantic Relation Extraction

نویسندگان

  • Kotaro Nakayama
  • Takahiro Hara
  • Shojiro Nishio
چکیده

Wikipedia, a collaborative Wiki-based encyclopedia, has become a huge phenomenon among Internet users. It covers huge number of concepts of various fields such as Arts, Geography, History, Science, Sports and Games. Since it is becoming a database storing all human knowledge, Wikipedia mining is a promising approach that bridges the Semantic Web and the Social Web (a. k. a. Web 2.0). In fact, in the previous researches on Wikipedia mining, it is strongly proved that Wikipedia has a remarkable capability as a corpus for knowledge extraction, especially for relatedness measurement among concepts. However, semantic relatedness is just a numerical strength of a relation but does not have an explicit relation type. To extract inferable semantic relations with explicit relation types, we need to analyze not only the link structure but also texts in Wikipedia. In this paper, we propose a consistent approach of semantic relation extraction from Wikipedia. The method consists of three sub-processes highly optimized for Wikipedia mining; 1) fast preprocessing, 2) POS (Part Of Speech) tag tree analysis, and 3) mainstay extraction. Furthermore, our detailed evaluation proved that link structure mining improves both the accuracy and the scalability of semantic relations extraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Search Engine for Browsing the Wikipedia Thesaurus

Wikipedia has become a huge phenomenon on the WWW. As a corpus for knowledge extraction, it has various impressive characteristics such as a huge amount of articles, live updates, a dense link structure, brief link texts and URL identification for concepts. In our previous work, we proposed link structure mining algorithms to extract a huge scale and accurate association thesaurus from Wikipedi...

متن کامل

Wikipedia Mining Wikipedia as a Corpus for Knowledge Extraction

Wikipedia, a collaborative Wiki-based encyclopedia, has become a huge phenomenon among Internet users. It covers a huge number of concepts of various fields such as Arts, Geography, History, Science, Sports and Games. As a corpus for knowledge extraction, Wikipedia’s impressive characteristics are not limited to the scale, but also include the dense link structure, word sense disambiguation bas...

متن کامل

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

A language-independent method for the extraction of RDF verbalization templates

With the rise of the Semantic Web more and more data become available encoded using the Semantic Web standard RDF. RDF is faced towards machines: designed to be easily processable by machines it is difficult to be understood by casual users. Transforming RDF data into human-comprehensible text would facilitate non-experts to assess this information. In this paper we present a languageindependen...

متن کامل

Wikipedia Mining for Triple Extraction Enhanced by Co-reference Resolution

Since Wikipedia has become a huge scale database storing wide-range of human knowledge, it is a promising corpus for knowledge extraction. A considerable number of researches on Wikipedia mining have been conducted and the fact that Wikipedia is an invaluable corpus has been confirmed. Wikipedia’s impressive characteristics are not limited to the scale, but also include the dense link structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008